Low-Complexity Iterative Algorithms for (Discrete) Compressed Sensing
نویسندگان
چکیده
We consider iterative (“turbo”) algorithms for compressed sensing. First, a unified exposition of the different approaches available in the literature is given, thereby enlightening the general principles and main differences. In particular we discuss i) the estimation step (matched filter vs. optimum MMSE estimator), ii) the unbiasing operation (implicitly or explicitly done and equivalent to the calculation of extrinsic information), and iii) thresholding vs. the calculation of soft values. Based on these insights we propose a low-complexity but well-performing variant utilizing a Krylov space approximation of the optimum linear MMSE estimator. The derivations are valid for any probability density of the signal vector. However, numerical results are shown for the discrete case. The novel algorithms shows very good performance and even slightly faster convergence compared to approximative message passing.
منابع مشابه
Algorithmes itératifs à faible complexité pour le codage de canal et le compressed sensing. (Low Complexity Iterative Algorithms for Channel Coding and Compressed Sensing)
Iterative algorithms are now widely used in all areas of signal processing and digital communications. In modern communication systems, iterative algorithms are used for decoding low-density parity-check (LDPC) codes, a popular class of error-correction codes that are now widely used for their exceptional error-rate performance. In a more recent field known as compressed sensing, iterative algo...
متن کاملAdaptive Compressed Sensing Using Sparse Measurement Matrices
Compressed sensing methods using sparse measurement matrices and iterative message-passing recovery procedures are recently investigated due to their low computational complexity and excellent performance. The design and analysis of this class of methods is inspired by a large volume of work on sparsegraph codes such as Low-Density Parity-Check (LDPC) codes and the iterative Belief-Propagation ...
متن کاملBias Compensation in Iterative Soft-Feedback Algorithms with Application to (Discrete) Compressed Sensing
In all applications in digital communications, it is crucial for an estimator to be unbiased. Although so-called soft feedback is widely employed in many different fields of engineering, typically the biased estimate is used. In this paper, we contrast the fundamental unbiasing principles, which can be directly applied whenever soft feedback is required. To this end, the problem is treated from...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.06879 شماره
صفحات -
تاریخ انتشار 2017